Symbolic transfer entropy rate is equal to transfer entropy rate for bivariate finite-alphabet stationary ergodic Markov processes
نویسندگان
چکیده
Transfer entropy is a measure of the magnitude and the direction of information flow between jointly distributed stochastic processes. In recent years, its permutation analogues are considered in the literature to estimate the transfer entropy by counting the number of occurrences of orderings of values, not the values themselves. It has been suggested that the method of permutation is easy to implement, computationally low cost and robust to noise when applying to real world time series data. In this paper, we initiate a theoretical treatment of the corresponding rates. In particular, we consider the transfer entropy rate and its permutation analogue, the symbolic transfer entropy rate, and show that they are equal for any bivariate finite-alphabet stationary ergodic Markov process. This result is an illustration of the duality method introduced in [T. Haruna and K. Nakajima, Physica D 240, 1370 (2011)]. We also discuss the relationship among the transfer entropy rate, the time-delayed mutual information rate and their permutation analogues.
منابع مشابه
Permutation Complexity and Coupling Measures in Hidden Markov Models
In [Haruna, T. and Nakajima, K., 2011. Physica D 240, 13701377], the authors introduced the duality between values (words) and orderings (permutations) as a basis to discuss the relationship between information theoretic measures for finite-alphabet stationary stochastic processes and their permutation analogues. It has been used to give a simple proof of the equality between the entropy rate a...
متن کاملThe permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems
Permutation entropy quantifies the diversity of possible orderings of the values a random or deterministic system can take, as Shannon entropy quantifies the diversity of values. We show that the metric and permutation entropy rates—measures of new disorder per new observed value—are equal for ergodic finite-alphabet information sources (discrete-time stationary stochastic processes). With this...
متن کاملRelative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain
In this paper we study the relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative entropy between two finite subsequences of above mentioned chains with the help of the definition of...
متن کاملADK Entropy and ADK Entropy Rate in Irreducible- Aperiodic Markov Chain and Gaussian Processes
In this paper, the two parameter ADK entropy, as a generalized of Re'nyi entropy, is considered and some properties of it, are investigated. We will see that the ADK entropy for continuous random variables is invariant under a location and is not invariant under a scale transformation of the random variable. Furthermore, the joint ADK entropy, conditional ADK entropy, and chain rule of this ent...
متن کاملA note on prediction for discrete time series
Let {Xn} be a stationary and ergodic time series taking values from a finite or countably infinite set X and that f(X) is a function of the process with finite second moment. Assume that the distribution of the process is otherwise unknown. We construct a sequence of stopping times λn along which we will be able to estimate the conditional expectation E(f(Xλn+1)|X0, . . . , Xλn) from the observ...
متن کامل